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ABSTRACT

Lactoferrin (LF) is an iron binding glycoprotein that is present in several
mucosal secretions. Many biological functions have been ascribed to LF. One of
the functions of LF is the transport of metals, but LF is also an important
component of the non-specific immune system, since LF has antimicrobial
properties against bacteria, fungi and several viruses. This review gives an
overview of the present knowledge about the antiviral activities and, when
possible, the antiviral mechanisms of this protein. Lactoferrin displays antiviral
activity against both DNA- and RNA-viruses, including rotavirus, respiratory
syncitial virus, herpes viruses and HIV. The antiviral effect of LF lies in the early
phase of infection. Lactoferrin prevents entry of virus in the host cell, either by
blocking cellular receptors, or by direct binding to the virus particles.



Chapter 1 13

1.1: Structure and origin of Lactoferrin.

Lactoferrin (LF) is a member of the transferrin gene family. LF is the
product of a 35-kb gene and a high degree of homology of this protein between
different species is observed 76,78,93. LF is an 80 kD glycosylated protein,
consisting of 692 amino acids 93,107,114. LF is a net positively charged protein, with
a pI in the range of approximately 8.0-8.5 76,78. The protein consists of a single
polypeptide chain, folded in 2 symmetric, globular lobes (N- and C-lobe, Fig. 1 7).
These two lobes are connected with a “hinge region”, which provides additional
flexibility to the molecule 2,140. Each separate lobe is capable of binding one metal
atom. Metals that are bound by LF are Fe2+ or Fe3+-ions, but also the binding of
Cu2+-, Zn2+- and Mn2+-ions has been described 76,78. Between the separate lobes, an
internal amino acid homology of 40% is observed and therefore it is assumed that
during evolution a gene duplication has resulted in the current LF-gene 93.

Fig. 1: Chemical structure of LF (adapted from Anderson et al. 2).
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Epithelial cells at the mucosa of many mammalian species 76,78 produce
LF. As a result, LF is present in several mucosal secretions such as tears, saliva
and seminal and vaginal fluids 76,78,87. Furthermore, LF is present in the secondary
vesicles of neutrophillic granulocytes 8,16,76-78. Lactoferrin is present in low
concentrations in plasma, approximately 0.2 µg/ml 9,137, and it is thought that the
plasma concentrations are the net result of the spontaneous release from these
granulocytes and clearance from the circulation 9,137. In fact, a linear correlation
between plasma LF concentrations and neutrophil counts has been established 137.
Breast milk is the major source of LF. It is abundantly excreted in colostrum in a
concentration up to 7 g/l (the first breast milk that is produced post partum) and
the LF concentrations in mature milk decline roughly sevenfold in time during
lactation 60,61,76,78,97. LF concentrations in breast milk vary among different
mammals, being highest in humans, whereas in rats and dogs no LF has been
detected so far 88.

1.2: Pharmacokinetic studies.
Pharmacokinetic studies in rats and mice have demonstrated a rapid

clearance of LF from the bloodstream by the liver 92,105,112,113,147. Both hepatocytes
89,147 as well as Kupffer cells 104,105 are responsible for uptake of LF. However,
higher dosages of LF resulted in prolonged plasma levels 10. Plasma elimination
curves were best described by a two compartiment model. The initial plasma half
life (t1/2) was found to approximately 8 min, while the second component
mounted to 220 min. The volume of distribution (V) was found to 25.1 ml and the
the initial clearance (Cli) was 0.57 ml/min. and an increase in the dosage resulted
in an increased plasma t1/2 of several hours 10. In addition, binding to vascular
endothelium was observed in vivo. This binding to endothelial cells could be
confirmed by in vitro cell binding studies. In addition, LF was found to be
associated on membranes of infiltrated leukocytes in various organs and was also
detectable in low concentrations in the lymphatic system 10. LF was also detectable
in plasma after i.p. administration. The bioavalailability was 0.6%, but could be
increased to 3.6% after repeated administration 10.

Two classes of binding sites for LF on cell membranes have been
described. LF can bind with high affinity to a 105 kD receptor, but binding to low
affinity binding sites such as glycosaminoglycans does also occur. The positively
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charged N-terminus of LF is responsible for the binding to glycosaminoglycans
such as heparan sulphate or chondroitin sulphate 65,78,127. In addition, the LDL
remnant receptor 112,147 and the 45kD subunit of the asialoglycoprotein receptor 13

have been demonstrated to act as receptors for LF.

1.3: Biological functions of Lactoferrin.
Since the discovery of LF in bovine 124 and human milk 1960 67, scientists

have been intrigued by the function of this protein. First it was thought that LF
was a mere iron transporter, since it was able to bind and release metal atoms.
Especially during the lactation period, LF may be an important protein for the
delivery of essential metals to the newborn 18,76,78,111. However, other proteins, like
transferrin, are more efficient in the transport of metals and nowadays it is thought
that LF comprises other biological functions.

LF is considered as an important component of the non-specific immune
system 76,78,140. Since the protein is strategically situated at the mucosa, LF plays a
role in the first line of defense against microbial infections, since many pathogens
tend to enter the body via the mucosa.

LF has bacteriostatic and bacteriocidal activity against both gram-negative
and gram-positive bacteria 3,11,44,62,77,99. Binding of LF to lipopolysaccharides
(LPS) of gram-negative bacteria may be one of the antibacterial mechanisms of
LF30,42,43,102. In addition, this binding of LF to LPS prevents priming of
neutrophils, leading to an inhibition of superoxide anion production 6,30.

Furthermore, fungicidal activity, in particular against Candida species, has
been described 12,70,72,76,78,100,125. This antibacterial and antifungal activity is not
only achieved by deprivation of iron from the pathogen’s micro-environment, but
also by binding of the N-terminal region of LF to the cell walls of fungi and
bacteria, which causes membrane perturbation and leakage of intracellular
components 12,76,78,141. Plasma LF concentrations are significantly reduced in end-
stage AIDS-patients and it is conceivable that, since the specific immune system is
already impaired, these lowered LF concentrations, as a component of the non-
specific immune system, render these patients more sensitive to opportunistic
infections 137.
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1.4: Antiviral activities of breast milk.
For decades it has been generally accepted that breast-feeding is beneficial

for the newborn. Comparative studies between bottle-fed and breast-fed children
showed that the latter were less confronted with negative sequelae such as
diarrhoea, that were mediated by bacterial infections. In addition, fewer infections
with rotavirus, Respiratory Syncitial virus (RSV) or Vesicular Stomatitis Virus
(VSV) were observed 25,79,145.

Several constituents in breast milk may have a potentially protective
effect. Not only proteins of the non-specific immune system (lysozyme,
lactoperoxidase, LF), but also specific immunoglobulins (IgM, IgG and secretory
IgA), lipid components, cytokines or prostaglandins help in the protection of the
newborn 41,57,74. Later studies have shown that at least part of the antiviral
properties of breast milk can be attributed to a direct antiviral activity of LF. LF
comprises antiviral activity against a wide range of human and animal viruses,
both RNA-and DNA-viruses. An overview of these antiviral activities and the
possible mechanism underlying those activities of LF will be given below.

1.4.1: Antiviral activities of LF: Hepatitis C virus.
Hepatitis C virus (HCV) is a member of the flaviviridae family 69,133. HCV

is an enveloped virus that contains a positive, single strand RNA genome. A
unique feature of HCV is its ability to cause a persistent infection. Therefore,
HCV is associated with the cause of chronic hepatitis, liver cirrhosis and
hepatocellular carcinoma 28,73. At least 6 major HCV genotypes have been
identified, which are subdivided into more than 50 subtypes 24,110. This genetic
diversity of HCV plays a role in the immune evasion of HCV and has held back
the development of an adequate vaccine. Treatment of HCV infections has not
been very successful. Interferons have been used, however only with a low success
rate of up to maximally 30% 64,120. More success was obtained when a
combination therapy of interferons and ribavirin was applied 90.

Little was known about infection and maturation processes of HCV due to
the lack of an in vitro culture system. Recently however, Mituzani et al 94 and
Ikeda et al 64 employed two different human derived cell lines for the replication
of HCV. Using these culture systems, an antiviral effect of LF on HCV replication
was observed 63,64. The antiviral effect of LF was lost after heat treatment,
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indicating that the natural conformation of this protein is needed to exert its
antiviral effect.

Lactoferricin (LFcin), a tryptic digest obtained from the N-terminal region
of the N-lobe, which is strongly bactericidal and fungicidal, proved to be
ineffective against HCV. This further illustrates the need for the natural
conformation of LF for its antiviral activity 63. Time of addition assays indicated
that LF probably interferes with adsorption of HCV to the target cells: it is most
effective if administered before or simultaneous with the viral inoculum. Decrease
of incubation times of LF with HCV enhanced viral infection 63,64.
LF can prevent adsorption to target cells by the fact that it binds to the envelope
proteins of HCV E1 and E2 146. In addition, it was shown that LF interfered with
binding of HCV E2 in vivo, since anti-human LF antibodies, in the presence of
LF, were able to co-precipitate secreted and intracellular forms of E2, which were
transiently expressed in HepG2 cells. In concordance with others 63, LFcin did not
bind to these envelope proteins E1 or E2 146.

1.4.2: Antiviral activities of LF: Rotavirus.
Rotavirus is a member of the reoviridae-family 14,15,68. The genome of

rotavirus consists of 10 different segments of double stranded RNA, packaged
within a three-shelled capsid 14. Rotavirus infections are the most frequent cause of
non-bacterial gastro-enteritis in neonates and children in the world, causing
approx. 1 million death cases world-wide every year 15,68.
LF displays a potent inhibition of a simian rotavirus SA11 by LF in vitro 128. In
these studies, apo-LF was as potent in inhibiting rotavirus as the metal saturated
LF isoforms, but apo-LF had a 600 times higher selectivity index, due to its lack
of toxicity. The antiviral mechanism of LF against rotavirus lies in the prevention
of adsorption of the virus to the target cell, since LF is capable of binding virus
particles, as determined with flow cytometry of virus binding to target cells. Thus,
docking of virus to viral receptors on the target cells is prevented. Since in contrast
with many other viruses, rotavirus does not bind to glycosaminoglycans as
heparan sulphates 129, it is thought that LF cannot compete with rotavirus for
binding to its cellular receptors 128. Immunohistochemical analysis revealed that
LF interfered with antigen synthesis of rotavirus during active infection.



Chapter 118

Therefore, LF not only prevents infection, but also maintains an antiviral effect
after the virus has entered the target cell. The molecular basis for the latter effect is
not known at present.

Although LF proved to be potent against rotavirus in this study, others 55

failed to show any antiviral effect of LF.

1.4.3: Antiviral activities of LF: Friend virus.
Friend virus complex (FVC), a murine retrovirus, causes an

erythroleukemia in mice within 3 months after infection 80. In the early eighties,
Lu et al. 80 already published an effect of human LF and transferrin on disease
progression in mice infected with FVC. Later studies, 26,81,140 confirmed the
antiviral effect of human LF against FVC in their mouse leukaemia model. Human
LF prolonged survival rates, and decreased viral titres in the spleen of infected
mice. For this effect, LF needed to be administered intraperitoneally in the early
phase of infection. Even a single bolus injection, if administered within 2 hrs after
infection proved to be effective. Combination of human LF with recombinant
murine interferon-γ resulted in synergistic effects.

LF had no direct effect on FVC infection in vitro. Therefore, the antiviral
mechanism observed in these animals probably lies in the regulatory effect of LF
on the myelopoiesis 81. LF was shown to decrease myelopoiesis in bone marrow
and the spleen 22,23,51. Infectivity of FVC is associated with the DNA-synthesis
phase of the cycle of the target cell 117. It is postulated that LF is able to
accomplish a decrease in cycling status of hematopoietic progenitor cells in vivo.
This is confirmed by the regulatory effects of LF in myelopoiesis 5,19-21,48 and the
ability of LF to act as a transcription factor 47.

1.4.4: Antiviral activities of LF: Poliovirus.
Poliovirus is an enterovirus from the picornaviridae family 14.

Characteristic for picorna viruses is their relatively small genome, consisting of a
single stranded positive RNA molecule, which is packaged, in a single capsid
without an envelope. The RNA-genome however, is packaged in a small capsid 14.
Infections with poliovirus lead to poliomyelitis, which can cause paralysis of
limbs. As a result of vaccination programs, poliovirus has been eradicated in the
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industrialised West. However, poliovirus infections are still a problem in
developing countries.

Marchetti et al. 86 have shown antiviral activity of LF against poliovirus in
vitro. By addition of LF at various timepoints during infection with poliovirus, the
antiviral mechanism of LF against poliovirus was found to be manifest in the early
phases of viral infection. Binding of LF to the target cells was confirmed with
immunofluorescent staining, indicating that LF interferes with entry of poliovirus
into the target cell. In this study, various LF variants saturated with different metal
atoms, such as Fe3+, Zn2+ and Mn2+, were tested against poliovirus. Interestingly,
Zn2+-LF, which was added after the virus adsorption phase, was still capable of
inhibiting viral replication. The authors hypothesised that due to the binding of
Zn2+-LF to the target cell, Zn2+-ions were more efficiently delivered to the target
cell. The increased availability of Zn2+-ions is a likely cause of impaired poliovirus
replication which was shown as early as in 1976 45.

1.4.5: Antiviral activities of LF: Respiratory Syncitial Virus.
Infections with Respiratory Syncytial Virus (RSV), a member of the

paramyxoviridae family, are the most common cause of acute lower airway
infections in infants and children 14. Breast milk has a protective effect against
illness from RSV infections 40,109. However, little is known about the breast milk
components that play a role in the antiviral effect against RSV, although it is
thought that immunoglobulins and lipids are the most important components.
Nevertheless, breast milk harbours RSV neutralising activity in breast milk that
could not be related to presence of immunoglobulins 74. Moreover, human LF
displayed antiviral effect against RSV in concentration ranges well below normal
LF levels in breast milk 55. The antiviral mechanism of LF against RSV has not
been elucidated yet.

1.4.6: Antiviral activities of LF: HIV.
Human Immunodeficiency Virus (HIV), is a member of the lentiviridae. The
genome consists of single stranded RNA that is packaged in a capsid. The capsid
is surrounded with an envelope, which contains glycoproteins that are involved in
the entry of the target cell. Data about LF levels in plasma or saliva of HIV-
infected subjects are conflicting. An increase in LF levels 8,82 but also decreases in
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LF levels were observed 37,98. However, the observed decreases in LF levels were
eminent in tears and plasma of symptomatic AIDS patients, who are more often
subject to opportunistic infections. Semba et al.118 demonstrated a linear
correlation between low maternal serum LF levels and perinatal transmission of
HIV to the neonate. All these clinical data demonstrate that LF is involved in the
antiviral defence against HIV in vivo.
Bovine as well as human LF are potent inhibitors of HIV-infection in vitro.
58,108,130,131. The combination of LF with zidovudine could have synergistic
inhibitory effects 138.

The antiviral mechanism of LF against HIV takes place in an early phase
of infection, probably during adsorption of the virus to target cells 58,108. The
antiviral effect of LF diminishes when LF is administered at increasing time points
after infection. LF is capable of binding to the GPGRAF-domain in the V3 loop of
the gp120 glycoprotein, albeit to a lesser extent as compared to negatively charged
albumins 131. The negatively charged hinge region of LF was responsible for the
binding to gp120. It is possible that binding to gp120 is responsible for the
antiviral effect of LF, since gp120 plays an important role in the adsorption and
entry of HIV into target cells by binding to CD4 or chemokinereceptors 27,50,71,122.
In addition, all these studies showed that the iron saturation of LF does not play an
important role. Both apo-LF as well as holo-LF (fully saturated with metal atoms)
displays antiviral activity against HIV, although apo-LF remains more potent than
holo-LF.

1.4.7: Antiviral activities of LF: Herpesviridae.
Herpes simplex virus types 1 and 2 (HSV-1 and –2) are members of the α-

herpes virus family 14. The genome of all herpes viruses consists of DNA and
infection with HSV can be persistent or latent. Reactivation of HSV-1 and –2
causes mild disease in immunocompetent subjects. However, reactivations in
immunocompromised patients such as AIDS-patients, transplant recipients and
premature neonates can be quite severe and even life threatening 56. Antiviral
treatment with acyclovir or its derivatives is successful in limiting the infection.
However, this treatment is increasingly complicated by antiviral resistance 31.
Several groups have reported antiviral effect of bovine and human LF against both
HSV-1 and –2. Both apo-LF as well as holo-LF were capable of inhibiting both
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viruses 59. Later, Fujihara et al. 49 reported antiviral activity of LF against HSV-1
in vitro, but also in vivo in a mouse cornea infection model. Topical administration
of 1% LF solution significantly decreased infection, however virus replication was
not fully inhibited.

Other groups have confirmed the in vitro antiviral activity of LF against
both HSV-1 &-2 56,84,85,121. The antiviral mechanism lies in the early phase of
infection. Using metabolically labelled virions, LF was found to inhibit adsorption
of virus to the target cells 54,59. The metal saturation of LF did not play a
significant role in the inhibition of HSV 85. Furthermore, incubation of target cells
with virus, in the presence of LF at 4°C, followed by a temperature shift to 37°C
prevented internalisation of virus into the target cells. In addition, the observation
that virus particles could be bound to latex beads that were coated with LF
indicates that entry of virus is at least partially prevented by binding of LF to virus
particles 84,85.

Not only intact LF was capable of inhibiting HSV; a tryptic digest of LF
was also antivirally active 56,121. Further purification of the tryptic digest resulted
in 4 different fractions, both from the C- and N-lobe, that displayed antiviral
activity 121. Hammer et al.56 demonstrated that LFcin, a residue of 24 amino acids
derived from the N-lobe, displayed antiviral activity too. Both studies revealed
that, although peptide fragments display antiviral activity against HSV, the native
protein was more potent 56,121.

1.4.8: Antiviral activities of LF: Cytomegalovirus.
Cytomegalovirus (CMV) is a member of the β-herpes virus family. Like

other herpesviruses, CMV causes a latent and persistent infection 1. CMV is often
acquired during the early years of life and primary infection is generally unnoticed
due to the lack of clinical symptoms. In western countries, up to 60% of the
population is carrier of this virus. However, depending on socio-economic status
or population density, seropositivity may exceed 90% 1,101. CMV is able to
reactivate under circumstances of immunosuppression. Reactivations in these
immunocompromised hosts such as AIDS patients, transplant recipients or preterm
neonates, cause severe morbidity and mortality 106,143,144. HIV-infected subjects,
who are also seropositive for CMV, progress more rapidly to AIDS 52,53,123,142. In
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fact, symptomatic AIDS patients who suffer frequently from CMV-reactivations
with high viral loads are associated with a decreased survival time 17,36,126.

The antiviral effect of LF against CMV in vitro was established in 1994 59,
later studies confirmed this effect 29,58,130,132. LF probably interferes with the entry
of virus into the target cell, since preincubation of target cells with LF is essential
for its antiviral effect. Low affinity binding of LF to heparan sulphate
proteoglycans (HSPGs) 34,83,134,148 prevents the virus from docking to the target cell
32. The N-terminal region of LF proved to be essential for its antiviral activity.
Deletion of the Arg-stretch, which is responsible for binding to HSPGs, gradually
diminishes the antiviral activity of LF 130,132. The potency of LF was increased
when the positive charge of the protein was increased by chemical modification,
whereas addition of negative charge abolished the antiviral effect of LF 130.

Although LF has a direct effect on CMV in vitro, an indirect effect of LF
against CMV in vivo has been established. In a mouse model for CMV infections,
LF protected against a potentially lethal infection with murine CMV (MCMV).
The antiviral effect was optimal when LF was administered previous to infection
with MCMV 119. Further studies indicated that the protective effect of LF was due
to an upregulation of Natural Killer cells (NK-cells), which eliminated the
infection. The stimulation of NK-cells, but also monocytes and granulocytes by
LF both in vivo and in vitro has been documented earlier 33,35,76,78.

In vivo studies in transmission of human CMV (HCMV) to neonates by
breast feeding indicated that HCMV could hardly be detected in breast milk, the
first month post partum, either by culture or by PCR 4,101. These studies claim a
protective effect of LF in the transmission of HCMV to the newborn during the
first stage post partum. However, other studies could not confirm this protective
effect 136.

Summary.
Besides a broad antimicrobial spectrum against bacteria and fungi, LF is

capable of inhibiting replication of a wide range of viruses. Nearly all studies
indicate that LF prevents infection of the host cell, rather than it inhibits virus
replication after the target cell has become infected (Fig. 2). Infection of the target
cell is prevented by direct binding to virus particles, as described for HCV, polio-
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and rotavirus, HSV and possibly HIV. Another mechanism for the antiviral
activity of LF is binding to host cell molecules that the virus uses as a receptor or
co-receptor. For instance binding of LF to HSPGs is a central phenomenon. Many
viruses tend to dock on HSPGs of target cells. After this initial contact, the virus
particles roll to their specific viral receptor and subsequently enter the host cell,
for instance by fusing with the host cell membrane 32,75,115,116,139. Binding of LF to
HSPGs prevents this first contact and thus subsequent infection of the host cell.
Interestingly, peptide fragments of LF, such as LFcin do not inhibit most of the
viruses tested. Although LFcin is at least partially responsible for the antimicrobial
effect against bacteria and fungi, by the formation of pores in the cell wall of fungi
and bacteria, this peptide apparently does not seem to be important for the antiviral
effect.

For some of the viruses tested it was found that apo-LF was more potent
than the metal-saturated isoforms of LF. The reason for this is unknown. However,
it is speculated that binding of LF to target cells may lead to an increased uptake
of metals such as Zn2+, which showed to be antivirally active against poliovirus 45.
Another reason for the increased activity of apo-LF may be that most enzymes,
including viral enzymes, require metal ions as a co-factor for their function. It is
conceivable that apo-LF is more efficient in the withdrawal of metal ions from the
micro-environment, compared to the partially or fully metal saturated isoforms of
LF.

Fig. 2: Schematic representation of the antiviral mechanisms of LF. LF prevents infection of the host
cell by virus particles by either direct binding to virus particles. In addition, docking of the virus is prevented by
binding to HSPGs or by direct binding to viral receptors of the host cell. Finally, an intracellular activity of LF
has been postulated.
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Other studies have shown, that LF does not only exert a direct antiviral
effect either by binding to target cells or virus particles. An indirect antiviral
mechanism of LF is taking place through the upregulation of the antiviral response
of the immune system. Administration of LF to cell cultures in vitro, or animals or
healthy volunteers led to an upregulation of NK-cells, monocyte/macrophages and
granulocytes. These cell types play an important role during the early phases of
viral infection, before the specific immune system is upregulated and takes over
the antiviral response.

Future applications of LF.
Currently, the development of severe side effects and the development of

antiviral drug resistance complicate antiviral therapy. The selective delivery of
antiviral drugs may limit the development of side effects. An advantage of this
drug targeting strategy is the fact that fewer side effects may be expected, since
the drugs only reach the target cells (in this case, infected cells). Therefore, lower
amounts of drugs can be used to gain the same effect compared to conventional
therapy. Moreover, more potent, and more often, more toxic drugs can be used.
The intrinsic antiviral activity of LF makes this protein an interesting candidate for
application as a drug carrier. In this strategy, conventional drugs are chemically
coupled to intrinsically active proteins, which can be modified to specifically
home to certain cell types of tissues 91,95,96. Specific delivery of this drug-carrier-
conjugate may prevent the backdraws that were mentioned earlier. In addition,
combination of antiviral drugs with different mechanisms of action may prevent
development of drug resistance. Such an approach was taken by us 66and others for
Hepatitis B-virus targeting using lactosaminated proteins and polymer carriers
38,39,46,66.

Different studies have already demonstrated the synergistic effects of
combinations of conventional drugs with LF in vitro. Combination of LF with
conventional antifungal drugs led to a synergistic inhibition of Candida species
72,103. Combination of LF with the anti-CMV drug cidofovir resulted in enhanced
inhibition of CMV-infection135. In concordance, synergistic activity against HIV
was suggested on the combination of LF with the nucleoside analogue AZT 138.
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Therefore, it deserves further studies to combine antivirals with LF, or to couple
antiviral drugs to LF. We are presently studying whether covalent binding of
cidofovir to LF yields an effective drug targeting preparation for CMV-infected
target cells.
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 Aim of this thesis.
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Cytomegalovirus (CMV) is a member of the ß-herpes virus family. Like
other herpes viruses, the virus establishes a latent or persistent infection after
primary infection. Primary infections with CMV are generally unnoticed due to
the lack of symptoms. Approximately 60% of the western population have
experienced an infection with CMV, but dependent on socio-economic status or
population density this number may reach values up to 100% 1,11.
In the immunocompromised patients such as transplant recipients, premature
neonates and AIDS patients, primary infections or reactivations of CMV can cause
severe morbidity or even mortality 1,12,19,20. In fact, CMV can enhance the progress
of AIDS in HIV-infected subjects 6,7,16,18 and frequent reactivations of CMV with
high viral loads are associated with a decreased survival time of AIDS patients
4,5,17. In transplant recipients, primary infections or reactivations of CMV have
been associated with the development of both acute and chronic transplant
dysfunctions 2,13,14.

Currently, treatment of CMV infections is complicated by the
development of severe side effects and drug resistance 3,21 10,15. Especially in the
immunocompromised patients, who need continuous treatment due to the lack of a
proper immune response, side effects and drug resistance are problematic. These
side effects would be less pronounced if the antiviral drugs were specifically
delivered to infected cells only. In addition, a lesser amount of drugs would be
needed to gain the same effect. As a result of the selective delivery of antiviral
drugs, more potent, and thus more toxic, drug could be used.

In this drug targeting concept, (chemically modified) glycoproteins, which
are specific for a certain tissue or cell type, can be used as a carrier molecule for
the specific delivery of conventional antiviral drugs. The use of intrinsically
antivirally active carrier proteins in combination with conventional antiviral drugs
with different mechanisms of action may result in a simultaneous inhibition in
different steps of viral entry and replication of the virus. As a result, the
development of drug resistance may be prevented or at least delayed.

Since LF had displayed a potent antiviral activity against CMV in vitro 8,9,
we were interested in the application of lactoferrin (LF) as an intrinsically active
drug carrier. Aim of this thesis was to investigate whether LF represents a potential
carrier for the selective delivery of antiviral drugs. Therefore, we decided to study
the mechanism of antiviral activity of LF in vitro. In addition, combinations of
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conventional antiviral drugs with LF were tested against CMV in vitro. Finally,
two rat models for CMV infection were employed to evaluate the antiviral effect
of LF in vivo.
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